Local Bounds, Harnack’s Inequality and Hölder Continuity for Divergence Type Elliptic Equations with Non-standard Growth

نویسنده

  • NOEMI WOLANSKI
چکیده

We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div ( |∇u|p(x)−2∇u ) = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through ‖|u|p(x)‖p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-Hölder continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and Hölder continuous when f ∈ Lq0(x)(Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations divA(x, u,∇u) = B(x, u,∇u) with p(x)-type growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Proof of Harnack’s Inequality for Elliptic Partial Differential Equations in Divergence Form

In this paper we give a new proof of Harnack’s inequality for elliptic operator in divergence form. We imitate the proof given by Caffarelli for operators in nondivergence form.

متن کامل

Compactness Methods for Hölder Estimates of Certain Degenerate Elliptic Equations

In this paper we obtain the interior C regularity of the quasilinear elliptic equations of divergence form. Our basic tools are the elementary local L estimates and weak Harnack inequality for second-order linear elliptic equations, and the compactness method.

متن کامل

A sharp Hölder estimate for elliptic equations in two variables

We prove a sharp Hölder estimate for solutions of linear two-dimensional, divergence form elliptic equations with measurable coefficients, such that the matrix of the coefficients is symmetric and has unit determinant. Our result extends some previous work by Piccinini and Spagnolo [7]. The proof relies on a sharp Wirtinger type inequality.

متن کامل

Partial Hölder continuity for solutions of subquadratic elliptic systems in low dimensions

We consider weak solutions of second order nonlinear elliptic systems in divergence form under standard subquadratic growth conditions with boundary data of class C. In dimensions n ∈ {2, 3} we prove that u is locally Hölder continuous for every exponent λ ∈ (0, 1 − n−2 p ) outside a singular set of Hausdorff dimension less than n − p. This result holds up to the boundary both for non-degenerat...

متن کامل

Harnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes

For a general class of divergence type quasi-linear degenerate parabolic equations with measurable coefficients and lower order terms from non-linear Kato-type classes, we prove local boundedness and continuity of solutions, and the intrinsic Harnack inequality for positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015